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Abstract Withdrawal of a fluid through an isolated line sink (for planar flow) or a point sink (for axi-symmetric
flow in three dimensions) is considered. A linearized solution is presented in both cases, under the assumption that
the sink strength is small and the sink is turned on gradually. The results show that the behaviour for small times
is as if an image source were present above the surface. Asymptotic results indicate that, in both cases, the flow
rapidly develops an effective image sink above the free surface.

Keywords Asymptotic behaviour · Heuristic derivation · Linearized solution · Method of stationary phase ·
Withdrawal flows

1 Introduction

The withdrawal of fluid from a tank, a reservoir or even the lens of fresh ground-water in an island is an important
problem that has been much studied. Until relatively recently, theoretical modelling of these problems has mostly
assumed steady flow conditions. This is because withdrawal is often a process that occurs on a long time-scale, so
that the transients associated with start-up have long since ceased to be of interest. In addition, the computational
modelling of a steady process is simpler, as it involves one fewer independent variable.

An important earlier contribution to the steady modelling of withdrawal flows was the paper of Tuck and
Vanden-Broeck [1], who considered the canonically simple, but nonlinear, problem of a line sink beneath a free
surface, in planar ideal flow. They showed that two types of flow configurations were possible. The first occurred
over a range of small withdrawal rates and involved an almost horizontal free surface of the fluid, with a stagnation
point directly above the sink. In the second flow type, the interface was drawn down into a vertical cusp above the
sink. This second type occurred at only one particular value of the sink strength, and Hocking [2] presented an
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argument that it represented the critical withdrawal strength at which the interface would be drawn right down into
the sink in a practical situation.

There is now a significant literature on this problem, much of which is focussed on attempting to resolve the
relationship between the two solution types found by Tuck and Vanden-Broeck [1]. For planar flows, Forbes and
Hocking [3] included surface tension and showed numerically that a fold bifurcation was present for the branch of
solutions at small sink strength, near the maximum value. Steady withdrawal solutions have also been computed
in three dimensions. Axi-symmetric free-surface flow into a submerged point sink was studied numerically by
Forbes and Hocking [4] and later by Vanden-Broeck and Keller [5], and again it was found that there is a branch of
steady solutions for small sink strength, with a limiting solution at some maximum strength. More complex flow
configurations in fully three-dimensional flow have been computed by Forbes and Hocking [6] and in a similar
problem in ground-water flow by Lucas and Kucera [7], for example.

It has become clear that a detailed understanding of the relationship between the steady solution types for
withdrawal flows demands a consideration of the fully unsteady (time dependent) flow problem. For planar flow
involving a submerged line sink, Tyvand [8] undertook a Taylor-series expansion to the second order in time. On
the basis of this calculation, Tyvand then estimated a critical Froude number (sink strength) at which the interface
might form a dip and be drawn downwards, although that calculation is possibly optimistic on the basis of such
a low-order Taylor series. Sozer and Greenberg [9] used a model set of evolution equations to study the unsteady
nonlinear development of planar withdrawal flows.

The time-dependent draining of a tank or reservoir has also been studied for three-dimensional fluid flow, with
axially symmetric geometry. Zhou and Graebel [10] used a boundary-integral method to compute the evolution of
the interface shape for draining flow from a circular tank, through a circular hole on the bottom at the centre. Their
results show that the free surface forms a jet near the centre of the tank, and this may be directed either upwards
or downwards, depending on the initial fluid depth and the radius of the drain hole. They suggested that the rapid
formation of the jet may be related to the Rayleigh–Taylor instability. Very similar conclusions were reached by
Baek and Chung [11] who included viscosity in a finite-difference approach. Xue and Yue [12] solved numerically
for nonlinear axisymmetric flow caused by a submerged point sink in unbounded fluid, when the sink is turned
on impulsively. They found three different flow behaviours, depending on the sink strength. For small strengths
the interface eventually evolved to a steady-state (time independent) configuration, for moderate sink strengths an
upward-directed jet formed, and for sufficiently strong sinks a downward jet was formed, drawing the free surface
into the sink. Interestingly, these three different solution types were all formed for smaller sink strengths than the
limiting strength at which Forbes and Hocking [4] computed their steady-state solutions. Such a striking difference
in the limiting values of the Froude number (sink strength) may suggest that the likelihood of ever approaching a
steady state in a time-dependent problem depends sensitively on the initial conditions for the flow, and hence its
history.

Initial conditions have been the subject of recent discussion in the literature. The unsteady computations [10–12]
discussed above evidently all started the solution from a horizontal initial free-surface profile, with an assumed zero
velocity potential. These zero conditions were also adopted by Miloh and Tyvand [13] in a Taylor-series expansion
of the axi-symmetric solution to third order in time. They estimated a critical sink strength at which dip formation
at the free surface would occur; although their results are low-order only, they are not inconsistent with the full
numerical results of Xue and Yue [12]. Imposing zero velocity potential on an initially flat interface is equivalent
to placing an image source at an equal height above the surface to the depth of submergence of the sink below it.

By contrast, Stokes et al. [14] have investigated a range of different initial conditions for the flow, and used both
Taylor-series expansion in time and a numerical semi-Lagrangian technique. They focussed on an initial condition
which effectively has an image sink above the interface, rather than the image source of Miloh and Tyvand [13].
This is equivalent to establishing a steady-state flow beneath a rigid lid, and then impulsively removing the lid so
that the free-surface position and the velocity potential may then evolve in time. Their numerical results suggested
this gave behaviour similar to that which is obtained by gradually increasing the sink strength. It may be that
this gentler method of starting the flow might allow steady-state situations to be achieved over a wider range of
sink strengths, than is possible for the more extreme case in which the sink is turned on impulsively, so possibly
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explaining the discrepancy between the results of Forbes and Hocking [4] and Xue and Yue [12]. Nevertheless,
such initial conditions have been criticized by Tyvand and Haugen [15], who claim they would be impossible to
produce due to the lack of tangential forces at the interface. This criticism cannot be true for situations such as those
in which steady flows are first created beneath a rigid plane which is then impulsively removed, but might perhaps
retain some validity in the extreme case in which the sink itself is turned on abruptly.

In the practical operation of a reservoir, the situation in which a sink in the fluid is turned on abruptly is unlikely
to be of great interest. Rather, the sink strength varies smoothly, reflecting the changing demands on water during
the day. The primary aim of the present paper, therefore, is to study the change in the analytical structure of the
solution as a sink is turned on gradually; this is done here in the context of a linearized solution, valid for small
sink strengths, since this enables detailed asymptotic study of the flow behaviour in a way that is not immediately
available to fully nonlinear numerical techniques. Nevertheless, such a linearized analysis can only give information
about the one behaviour type in which a steady-state solution is ultimately achieved. This fact was discussed by Xue
and Yue [12], who identified this as an obvious weakness of purely linearized analyses. Their other two solution
types, in which either upwardly or downwardly directed vertical jets are formed at the interface, are of course not
accessible to this analysis. (These three behaviour types were also reported by Stokes et al. [14]). In Sect. 2, we
summarize the heuristic arguments in favour of either the initial condition involving an image source above the
fluid, employed by Tyvand [8], or the condition with an image sink, as discussed by Stokes et al. [14]. The linearized
theory for two-dimensional (planar) flow into a line sink is then analyzed in detail in Sect. 3, and the corresponding
calculations for the three-dimensional axisymmetric case of flow into a point sink are given in Sect. 4. A brief
discussion concludes the paper in Sect. 5.

2 Heuristic results for impulsive start

In this section, we review models for small-time behaviour of a sink that is started impulsively in a fluid with a free
surface. Although the derivations are heuristic, they nevertheless reveal some aspects of the analytical structure of
the solution at small times, at least for small sink withdrawal strength.

The governing equations for this canonical nonlinear free-surface problem are well known. In this section, they
will be discussed for the case of planar flow into a line sink. The fluid is incompressible and inviscid, so that it flows
irrotationally. The velocity vector q = uex + vey can therefore be expressed in terms of a single scalar potential �

according to the relation q = ∇�. The velocity potential � satisfies Laplace’s equation

∇2� = 0. (2.1)

The fluid is unbounded, and assumed to occupy the lower half-plane y < 0 initially. A line sink is located at the
point (x, y) = (0,−h) within the fluid, so that the velocity potential there has the singular limiting behaviour

� → − m

2π
H(t) log

√
x2 + (y + h)2 as (x, y) → (0,−h). (2.2)

The constant m is the sink strength (fluid volume per time per width along the line sink), and H(t) represents the
Heaviside unit step function, which is zero for t < 0 and one for t > 0. (Strictly, dimensional quantities should not
be used in the argument of the logarithm, but this representation simplifies the algebra, and in any event does not
affect the outcome since only derivatives of the velocity potential are required).

If the interface has the representation y = η(x, t), then the kinematic condition there becomes

∂η

∂t
+ u

∂η

∂x
= v, (2.3)

representing the fact that the fluid is not free to cross its own boundary. There is also a dynamic free-surface condition

∂�

∂t
+ 1

2

(
u2 + v2

)
+ gη = 0 (2.4)

on the free surface. Here, g is the downward acceleration of gravity, and the condition comes from Bernoulli’s
equation in the fluid and the fact that pressure must be constant on the surface. There is, in fact, an ambiguity in the
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definition of the velocity potential �, since it is only known to an arbitrary additive function of time, so that the
constant 0 on the right-hand side of Eq. 2.4 can then be replaced with a function of time, without altering the actual
velocity components u and v.

The condition (2.2) corresponds to the sink being turned on impulsively at time t = 0, and in that case, there is
a heuristic expectation that the velocity potential � and surface elevation η should have the small-time behaviour

�(x, y, t) = H(t)
[
�0(x, y) + t�1(x, y) + t2�2(x, y) + · · ·

]

(2.5)
η(x, t) = H(t)

[
tη1(x) + t2η2(x) + · · ·

]
.

These expressions are then substituted in the boundary conditions (2.3) and (2.4) and terms collected at each power
of t .

There is, of course, an immediate difficulty with using expressions such as (2.5) in the dynamic free-surface
condition (2.4). Since the velocity potential � involves the discontinuous Heaviside step function H(t), its time
derivative can be expected to give rise to the Dirac delta function δ(t), which is a generalized function rather than
a function in the usual sense (see [16, p. 10]). The difficulty appears at the zeroth power in time, which formally
gives the condition

δ(t)�0 + H(t)�1 + 1
2 H(t)

[
(�0)

2
x + (�0)

2
y

]
= 0 on y = 0, (2.6)

from the dynamical condition (2.4). In order for this purely heuristic approach to the impulsively started sink
problem to continue, it is necessary to interpret this condition (2.6) in a sensible way.

The simplest interpretation of (2.6) is just to demand that

�0(x, 0) = 0, (2.7)

and this is effectively the approach taken by Tyvand [8], for example. It is equivalent to imposing zero velocity
potential on the undisturbed free surface η = 0 at time t = 0.

With this resolution of the difficulty posed by Eq. 2.6, the heuristic solution now proceeds without further com-
plication. The zeroth-order function �0 satisfies Laplace’s equation (2.1) subject to (2.7) on y = 0, and the singular
condition (2.2) (although with the Heaviside function H(t) deleted). The kinematic condition (2.3) then gives the
first-order surface elevation η1(x) from the equation

η1(x) = (�0)y(x, 0). (2.8)

When the zeroth-order velocity potential is obtained in this way, and combined with (2.8) and the expansions (2.5),
the potential at small time is found to be

�(x, y, t) = − m

2π
H(t)

[
log

√
x2 + (y + h)2 − log

√
x2 + (y − h)2

]
(2.9)

and the corresponding surface elevation is

η(x, t) = −H(t)t
mh

π
(
x2 + h2

) . (2.10)

Equation 2.9 shows that the initial potential behaves as if an image source were present above the interface. The
surface elevation (2.10) for small times then varies directly with the sink strength m.

Other interpretations of the formal condition (2.6) are also possible, however. In particular, if it is considered
that a steady flow into the sink has already been established in the presence of a rigid lid on y = 0 which is then
impulsively removed at t = 0, it is possible simply to take the zeroth-order velocity potential in the form

�0(x, y) = − m

2π

[
log

√
x2 + (y + h)2 + log

√
x2 + (y − h)2

]
, (2.11)

which is equivalent to an image line sink being present above the fluid. (For an established flow, the potential (2.11)
should strictly not be multiplied by the Heaviside function H(t) in Eq. 2.5, although the analysis is unaffected
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as this is just a solution to Laplace’s equation). The first-order term η1 for the surface elevation is obtained from
Eq. 2.8, and becomes simply

η1(x) = 0, (2.12)

in view of (2.11).
From (2.5), it is then necessary to consider the first-order term

H(t)t�1(x, 0) = −H(t)
tm2x2

2π2
(
x2 + h2

)2 ,

which follows from (2.6) and (2.11), and the identity tδ(t) = 0. The first-order term �1 for the velocity potential
may therefore be found by solving Laplace’s equation (2.1) in y < 0, subject to

�1 = − m2x2

2π2
(
x2 + h2

)2 (2.13)

on the line y = 0. Fourier transforms yield the result

�1(x, y) = m2

4π2h

x2(y − 2h) + y(y − h)2

[
x2 + (y − h)2

]2 . (2.14)

The kinematic condition (2.3) and the expansion (2.5) give the second-order expression

η2(x) = (�1)y(x, 0), (2.15)

from which the surface elevation at small time may be calculated, using the solution (2.14). When (2.12) and (2.15)
are thus combined with the expansion (2.5), the free surface is found to have the behaviour

η(x, t) = H(t)t2 m2
[
x4 − 6x2h2 + h4

]

4π2h
[
x2 + h2

]3 . (2.16)

This result (2.16) is the same as that obtained by Stokes et al. [14, their Eq. 22], and it shows that the surface
elevation varies with the square of the sink strength. It therefore gives a much smaller deformation to the surface,
for weak sinks, than the expression (2.10).

These results (2.9–2.11), (2.14), (2.16) have been obtained in an heuristic fashion only, relying on certain inter-
pretations of equations involving discontinuous functions and their derivatives (generalized functions). As such,
they can rightly be criticized for their lack of rigour. For this reason, it is appropriate now to investigate linearized
theories in more detail, incorporating the effects both of a pre-existent steady-state flow and a time-dependent
change to the sink strength. This is done in the next two sections, for planar and axi-symmetric flows, respectively.

3 Linearized analysis for planar flow

The equations of planar flow into a line sink at (0,−h) are the same as given in Sect. 2, except that we choose to
replace (2.2) with the expression

� → − m

2π
Ga(t) log

√
x2 + (y + h)2 as (x, y) → (0,−h). (3.1)

The function Ga(t) in (3.1) is chosen to allow for the case of a steady flow for times t < 0, a linear ramp-up of sink
strength over time interval 0 < t < a and then a final constant strength for t > a. Thus we have chosen

Ga(t) =
⎧
⎨
⎩

�, for t < 0
� + (1 − �)t/a, for 0 < t < a
1, for t > a.

(3.2)
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Fig. 1 A sketch of the sink strength function Ga(t)
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The constant � is a dimensionless multiple of the sink strength. For convenience, the function (3.2) is sketched in
Fig. 1 . Equation 3.2 represents the simplest continuous function that satisfies the desired criteria of this section; we
have also carried out the analysis for other more complicated functions, including a cubic-spline in which Ga(t)
and its first two derivatives are continuous, but the results are not significantly altered. For simplicity, therefore,
only the case (3.2) will be discussed here. (A similar function is mentioned briefly by Xue and Yue [12]).

We now perform a standard perturbation analysis in powers of the sink strength m (rather than the time t as in
Sect. 2). The velocity potential � and surface elevation η are represented as

�(x, y, t) = m�1(x, y, t) + O(m2), η(x, t) = mη1(x, t) + O(m2). (3.3)

(Strictly, these ought to be expansions in a Froude number, which is the sink strength m made dimensionless using
the acceleration g of gravity and the submergence depth h, but this does not affect the analysis). The first-order
functions �1 and η1 satisfy the linearized system of equations

∇2�1 = 0 (3.4)

in the lower half-plane y < 0 and

�1 → − 1

2π
Ga(t) log

√
x2 + (y + h)2 (3.5)

near the sink at (0,−h), subject to the kinematic condition

∂η1

∂t
= ∂�1

∂y
(3.6)

and the dynamic condition

∂�1

∂t
+ gη1 = 0 (3.7)

on the line y = 0.
The first-order velocity potential function �1 satisfying the linearized system (3.4)–(3.7) is split into a steady

and an unsteady component,

�1(x, y, t) = �S
1 (x, y) + �U

1 (x, y, t),

from which it is easily found that

�S
1 (x, y) = − �

2π

[
log

√
x2 + (y + h)2 + log

√
x2 + (y − h)2

]
. (3.8)

The unsteady component �U
1 must be calculated using a combination of Laplace transforms in t and Fourier

transforms in x . The process is straighforward, if lengthy, and the final result, when combined with the steady
component (3.8) and the expansion (3.3), gives the linearized velocity potential
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�(x, y, t) = − m

2π
Ga(t) log

√
x2 + (y + h)2 + m

2π
[Ga(t) − 2�] log

√
x2 + (y − h)2

+m(1 − �)

π

∫ ∞

0
eκ(y−h) cos(κx) [ f (κ, t) − H(t − a) f (κ, t − a)] dκ + O(m2). (3.9)

Here, it is convenient to define the intermediate function

f (κ, t) = t

aκ
− sin(

√
κgt)

aκ
√

κg
,

and H(t − a) denotes the Heaviside step function that is zero for t < a and one for t > a. The first-order surface
height is then obtained from Eq. 3.9 and the dynamic condition (3.7) in the form

η(x, t) = −m(1 − �)

πg

∫ ∞

0
e−κh cos(κx)

[
f ′(κ, t) − H(t − a) f ′(κ, t − a)

]
dκ + O(m2), (3.10)

with intermediate function

f ′(κ, t) = 1

aκ
− cos(

√
κgt)

aκ
.

A result equivalent to the potential (3.9) is given in complex form by Wehausen and Laitone [17, p. 495].

3.1 Small-time asymptotics

The behaviour of the linearized solution near t = 0 is obtained from (3.9) and (3.10) using straightforward
Taylor-series expansions of the intermediate functions f and f ′ in time. (The terms involving the Heaviside func-
tion H(t − a) vanish). The coefficients of each power in time are Fourier-cosine transforms that can be evaluated
in closed form. For small time, the velocity potential (3.9) behaves as

�(x, y, t) ∼ m

2π
[−� − (1 − �)t/a] log

√
x2 + (y + h)2 + m

2π
[−� + (1 − �)t/a] log

√
x2 + (y − h)2

−m(1 − �)

πa

[
gt3

3!
(y − h)

x2 + (y − h)2 + g2t5

5!
(y − h)2 − x2

[
x2 + (y − h)2

]2 + O(t7)

]
+ O(m2). (3.11)

A case of interest is the limit � → 0, where there is no pre-existing steady flow; the fluid starts from rest at t = 0
and the sink ramps up linearly to its final strength m at time t = a. The initial flow is then equivalent to a submerged
sink and an image line source above the fluid. This is as anticipated by Tyvand [8, Eq. 9] and summarized in Eq. 2.9.
When the sink is turned on from an existing steady flow 0 < � < 1, however, the small-time potential acts like a
submerged sink at (0,−h) with either a source or a sink at the image point (0, h), as expected.

The surface elevation η in (3.10) may similarly be analyzed to give its behaviour at small time. Taylor series
expansion gives

η(x, t) ∼ −m(1 − �)

πga

[
gt2

2!
h

x2 + h2 − g2t4

4!
h2 − x2

[
x2 + h2

]2 + O(t6)

]
+ O(m2). (3.12)

The first term in this expansion has behaviour similar to that in (2.10).
It is interesting to investigate the behaviour of the linearized interface (3.10) in the limit a → 0 corresponding

to instantaneous start of the sink. In this fully impulsive limit, Eq. (3.10) becomes

η(x, t) → −m(1 − �)

π

∫ ∞

0
e−κh cos(κx)

sin
(√

gκt
)

√
gκ

dκ + O(m2), as a → 0. (3.13)

A Taylor-series expansion in time may likewise be performed on Eq. 3.13, and each of the coefficients of the powers
of t is a Fourier-cosine transform that can be evaluated exactly. The result to third order is

η(x, t) ∼ m(1 − �)

π

[
−t

h

x2 + h2 + t3g

6

h2 − x2

[
x2 + h2

]2 + O(t5)

]
+ O(m2). (3.14)
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The two terms in (3.14) are identical to the terms at order t and t3 in Tyvand [8, Eq. 29], after allowance is made
for the non-dimensionalization used in that paper. However, the Tyvand [8] expression also contains a term at order
t2 which is not present in Eq. 3.14; this is due to the effects of nonlinearity, which are not considered in the present
analysis.

3.2 Large-time asymptotics

For t > a, the function Ga(t) in (3.2) and the Heaviside step function H(t − a) in (3.9) both take the value one, so
that the potential may be written

�(x, y, t) = − m

2π
log

√
x2 + (y + h)2 + m(1 − 2�)

2π
log

√
x2 + (y − h)2

+m(1 − �)

π

∫ ∞

0
eκ(y−h) cos(κx)

[
a
√

κg − 2 sin
(
a
√

κg/2
)

cos
(√

κg(t − a/2)
)

aκ
√

κg

]
dκ + O(m2).

(3.15)

To study the behaviour of (3.15) for large time, it is convenient to consider the y-derivative, which may be expressed
in the form

∂�

∂y
= − m

2π

[
(y + h)

x2 + (y + h)2 + (y − h)

x2 + (y − h)2

]

−m(1 − �)

π

∫ ∞

0
eκ(y−h) cos(κx)

sin
(
a
√

κg/2
)

a
√

κg/2
cos

(√
κg(t − a/2)

)
dκ + O(m2). (3.16)

The solution (3.16) is now evaluated along rays x = ct , and the trigonometric identity

cos(κx) cos
(√

κg(t − a/2)
) = 1

2Re
[
eitp1(κ) + eitp2(κ)

]
e−ia

√
κg/2

is used, in which it is convenient to define the two functions

p1(κ) = √
κg + κc, p2(κ) = √

κg − κc. (3.17)

The method of stationary phase may now be used to give the large-time behaviour of the vertical velocity
component in Eq. 3.16. This result is given in [18, p. 371], for example. For an integral of the form

I (t) =
∫ B

A
eitp(κ)G(κ) dκ (3.18a)

in which t is a large real parameter and the contour AB lies along the real axis, the function I has the asymptotic
form

I (t) ∼ G(κ0)e
itp(κ0)

√
2π

−tp′′(κ0)
e−iπ/4. (3.18b)

Here, κ0 is a real stationary-phase point A < κ0 < B at which p′(κ0) = 0 and p′′(κ0) < 0.
The function p2(κ) is the only quantity in (3.17) that has a positive stationary phase point, at κ0 = g/(4c2). The

method of stationary phase (3.18) therefore gives the large-time behaviour of (3.16) in the form

∂�

∂y
∼ − m

2π

[
(y + h)

x2 + (y + h)2 + (y − h)

x2 + (y − h)2

]

− 2m(1 − �)

a
√

πgtc
exp

(
g(y − h)

4c2

)
sin

(ag

4c

)
cos

(
g(t − a)

4c
− π

4

)
+ O(m2). (3.19)
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Finally, the substitution c = x/t is re-introduced into (3.19), and the result is integrated with respect to y. After a
little algebra, the final asymptotic form is obtained for the linearized velocity potential in the form

�(x, y, t) ∼ − m

2π

[
log

√
x2 + (y + h)2 + log

√
x2 + (y − h)2

]

− 8m(1 − �)

at2

√
x3

πg3 exp

(
gt2(y − h)

4x2

)
sin

(
agt

4x

)
cos

(
gt (t − a)

4x
− π

4

)
+ O(m2), (3.20)

valid for large time t .
The similar stationary-phase analysis may be applied to the formula (3.10) for the surface elevation. We state

the result here, for completeness. For large t ,

η(x, t) ∼ −4m(1 − �)

at

√
x

πg3 exp

(
−ght2

4x2

)
sin

(
agt

4x

)
sin

(
gt (t − a)

4x
− π

4

)
+ O(m2). (3.21)

The formula (3.20) shows that the velocity potential � at large times behaves like a submerged sink, with an
image sink above the fluid region. This is the behaviour obtained in Eq. 2.11, using an heuristic argument. This is, of
course, to be expected, as the linearized solution must ultimately tend to the steady-state behaviour for large-enough
time. However, Eq. 3.20 shows that this behaviour is established exponentially rapidly (since y < 0). The surface
elevation η in (3.21) vanishes exponentially quickly, at the first order in m, so that the smaller O(m2) surface height
is attained very rapidly after the sink reaches its steady-state strength, consistently with (2.16).

4 Linearized analysis for axisymmetric flow

We now consider the three-dimensional case, with axi-symmetric flow geometry and an isolated point sink located
at (x, y, z) = (0, 0 − h). The z-axis now points vertically, and the x- and y-coordinates are directed horizontally.
The sink strength M now has dimensions of volume per time.

Linearized equations are derived using a standard perturbation analysis in powers of the sink strength M , similarly
to Eq. 3.3. These expansions for the velocity potential � and surface elevation η take the form

�(x, y, t) = M�1(x, y, t) + O(M2), η(x, t) = Mη1(x, t) + O(M2). (4.1)

Cylindrical polar coordinates (r, θ) are defined through the usual relations x = r cos θ and y = r sin θ , and Laplace’s
equation for the first-order velocity potential function �1 now takes the form

∇2�1 = ∂2�1

∂r2 + 1

r

∂�1

∂r
+ ∂2�1

∂z2 = 0. (4.2)

Near the sink, the first-order velocity potential has the singular behaviour

�1 → 1

4π
Ga(t)

1√
r2 + (y + h)2

as (r, z) → (0,−h). (4.3)

Here, the sink strength function Ga(t) is exactly as defined in (3.2) and sketched in Fig. 1. The linearized kinematic
and dynamic conditions become

∂η1

∂t
= ∂�1

∂z
on z = 0 (4.4)

and

∂�1

∂t
+ gη1 = 0 on z = 0, (4.5)

respectively.
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In view of the form (4.2) of Laplace’s equation for the potential, the solution to the system of equations (4.1)–(4.5)
must be obtained using a combination of Laplace transforms in time and Hankel transforms in the radial coordinate
r (see, for example, [19]). It is also necessary to make use of the well-known identity [19, p. 219]
∫ ∞

0
e−hκ J0(κr) dκ = 1√

r2 + h2
,

in which J0 denotes the first-kind Bessel function of order zero. The calculation is then straightforward and, after
some algebra, the velocity potential is obtained in the form

�(r, z, t) = M

4π
Ga(t)

[
1√

r2 + (z + h)2
+ 1√

r2 + (z − h)2

]

− M(1 − �)

2πa

∫ ∞

0
[ f1(κ, t) − H(t − a) f1(κ, t − a)] eκ(z−h) J0(κr) dκ + O(M2), (4.6)

with intermediate function

f1(κ, t) = sin(
√

gκt)√
gκ

.

Again, the symbol H(t − a) represents the Heaviside step function that is zero for t < a and one for t > a. The
linearized surface height is also found using Laplace and Hankel transforms and may be shown to be

η(r, t) = − M(1 − �)

2πag

∫ ∞

0
[ f2(κ, t) − H(t − a) f2(κ, t − a)] e−κh J0(κr) dκ + O(M2), (4.7)

with intermediate function

f2(κ, t) = 1 − cos(
√

gκt).

When the limit a → 0 is taken in (4.6) and (4.7), in the same way as indicated for (3.13) in the previous section,
and the parameter � is set to zero, it may be shown that the resulting expressions are identical to those presented
by Xue and Yue [12]. An equivalent alternative representation of the potential (4.6) may also be derived from the
expression in [17, p. 492].

4.1 Small-time asymptotics

The behaviour of the linearized solution for small times is again obtained by Taylor-series of Eqs. 4.6 and 4.7 in
time, in which the terms involving the Heaviside step function H(t − a) all vanish. The coefficients of each power
in time are Hankel transforms, for which closed form expressions are known (see [19, p. 220]). After some algebra,
the small-time expansion of the velocity potential (4.6) becomes

�(r, z, t) ∼ M

2π
[� + (1 − �)t/a]

1√
r2 + (z + h)2

+ M

4π
[� − (1 − �)t/a]

1√
r2 + (z − h)2

+ M(1 − �)gt3

12πa

r[
r2 + (z − h)2

]3/2 + O(Mt5, M2). (4.8)

For small �, when there is no established steady-state flow at t = 0, the potential again behaves as if an image
source is present above the plane z = 0, at least for small times. A similar analysis can be performed for the surface
elevation η in (4.7), but yields no new information.
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4.2 Large-time asymptotics

For t > a, the functions Ga(t) and H(t − a) are both one, and so the velocity potential in (4.6) can be written in
the form

�(r, z, t) = M

4π

[
1√

r2 + (z + h)2
+ 1√

r2 + (z − h)2

]

− M(1 − �)

πa

∫ ∞

0

[
sin(

√
gκa/2) cos

(√
gκ(t − a/2)

)
√

gκ

]
eκ(z−h) J0(κr) dκ + O(M2). (4.9)

Similarly, the surface elevation becomes

η(r, t) = − M(1 − �)

πag

∫ ∞

0
sin(

√
gκa/2) sin

(√
gκ(t − a/2)

)
e−κh J0(κr) dκ + O(M2). (4.10)

In order to study the large-time behaviour of (4.9) and (4.10), we make use of the integral identity for the Bessel
function

J0(κr) = 1

π

∫ π

0
cos(κr sin θ) dθ,

which may be found in [19, p. 212] or [20, p. 360], for example. As in Sect. 3, we again consider the solution along
rays r = ct , and making use of the above identity, the potential (4.9) becomes

�(r, z, t) = M

4π

[
1√

r2 + (z + h)2
+ 1√

r2 + (z − h)2

]
− M(1 − �)

2π2a
Re

∫ π

0

∫ ∞

0

sin(
√

gκa/2)√
gκ

eκ(z−h)

×e−ia
√

gκ/2
[
eitp1(κ;θ) + eitp2(κ;θ)

]
dκ dθ + O(M2) (4.11)

and the surface elevation (4.10) may similarly be expressed as

η(r, t) = − M(1 − �)

2π2ag
Im

∫ π

0

∫ ∞

0
sin(

√
gκa/2)e−κh

×e−ia
√

gκ/2
[
eitp1(κ;θ) + eitp2(κ;θ)

]
dκ dθ + O(M2). (4.12)

The two intermediate functions in these expressions (4.11) and (4.12) are defined as

p1(κ; θ) = √
gκ + κc sin θ, p2(κ; θ) = √

gκ − κc sin θ. (4.13)

The method of stationary phase can now be applied to the inner integrals of these functions (4.11) and (4.12). Only
the second function p2 in (4.13) has a stationary point for positive κ , at fixed θ , at the value κ0 = g/(4c2 sin2 θ).
By making use of equations (3.18), the potential (4.11) has the large-time asymptotic form

�(r, z, t) ∼ M

4π

[
1√

r2 + (z + h)2
+ 1√

r2 + (z − h)2

]
− M(1 − �)

a
Re

∫ π

0
eit F(θ) sin

[ ga

4c sin θ

]

× exp

[
g(z − h)

4c2 sin2 θ

]
exp

[
iga

4c sin θ

]
eiπ/4

√
π3gtc sin θ

dθ + O(M2). (4.14)

In a similar fashion, the surface elevation η in (4.12) becomes, for large time,

η(r, t) ∼ M(1 − �)

2a
Im

∫ π

0
eit F(θ) sin

[ ga

4c sin θ

]
exp

[
− gh

4c2 sin2 θ

]

× exp

[
iga

4c sin θ

]
eiπ/4

√
π3gtc3 sin3 θ

dθ + O(M2). (4.15)

An intermediate function

F(θ) = −g/(4c sin θ)

has been defined for convenience.
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These expressions (4.14) and (4.15) have been written in a form that allows the method of stationary phase (3.18)
to be applied again. There is a further stationary-phase point at θ0 = π/2, so that, when the substitution c = r/t is
invoked and (3.18) is used, the final form of the velocity potential (4.14) at large time is

�(r, z, t) ∼ M

4π

[
1√

r2 + (z + h)2
+ 1√

r2 + (z − h)2

]

−2
√

2M(1 − �)

πgat
cos

[
gt (a − t)

4r

]
sin

[
gat

4r

]
exp

[
gt2(z − h)

4r2

]
+ O(M2). (4.16)

Similarly, the surface elevation (4.15) behaves as

η(r, t) ∼
√

2M(1 − �)

πgar
sin

[
gt (a − t)

4r

]
sin

[
gat

4r

]
exp

[
−ght2

4r2

]
+ O(M2). (4.17)

Equation 4.16 shows that the potential � approaches the steady-state-type behaviour, with an image sink above
the fluid, exponentially rapidly. Likewise, the expression (4.17) decays to zero extremely rapidly after time t = a,
so that only a small O(M2) surface elevation exists.

Figure 2 shows the velocity potential � for the axi-symmetric case, as a function of radial distance r . All profiles
were evaluated at the linearized surface z = 0, for the case � = 0.1. This is therefore a case in which a small
steady-state flow was already established when the sink strength was increased at t = 0. The steady-state potential
for eventual sink strength M is indicated with the thicker dotted line on the figure. The three solid lines represent
the velocity potential at the three times t/a = 0, 4 and 8, computed directly from (4.6) using numerical quadrature.
The small contribution to the initial profile t = 0 is caused by the pre-existent source flow of strength M�. As time
increases, the potential rapidly approaches the steady-state profile near r = 0, but also forms a wave that moves
radially outwards. The dashed line represents the potential evaluated from the asymptotic solution (4.16) at z = 0.
There is close agreement between this result and the numerically computed profile at t/a = 8.

The surface elevation for the same three times is shown in Fig. 3. These were computed by numerical quadrature
from (4.7). Numerically produced movies of the interface show that there is a large initial dip in the interface near
r = 0, which then overshoots before returning asymptotically to zero, to this order O(M) of accuracy. (The eventual
steady-state has an O(M2) surface elevation, which is not accessible to this linearized solution). A small train of
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Fig. 2 Velocity potential function � (in non-dimensional coor-
dinates) as a function of radial coordinate r/h, at the linearized
surface z = 0. The three solid lines are the solutions at times
t/a = 0, 4 and 8, as indicated on the figure. The thicker dotted
line is the steady-state solution and the dashed line is the profile
predicted by the asymptotic solution (4.16)
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Fig. 3 Surface height η (in non-dimensional coordinates) as
a function of radial coordinate r/h. The three solid lines are
the solutions at times t/a = 0, 4 and 8, as indicated on the
figure. The dashed line is the profile predicted by the asymp-
totic solution (4.17)
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transient waves is also seen to move radially outward from the centre, and the first of these is visible in Fig. 3. The
dashed line represents the asymptotic solution (4.17) at time t/a = 8.

5 Conclusions

This paper has considered the linearized solutions for both two-dimensional planar flow into a submerged line sink
in unbounded fluid, and axisymmetric flow into a point sink in three-dimensional flow. In both cases, it has been
shown that the analytical structure of the solution at small times is equivalent to an effective image source being
present above the fluid, as anticipated by the heuristic results (2.9) and (2.10) appropriate for the extreme case in
which the sink is started impulsively. The undisturbed surface is the equipotential � = 0 in (2.7), as suggested by
Tyvand [8]. However, the flow then evolves rapidly toward a situation in which the analytical structure involves an
effective image sink above the fluid, as for steady flow. Indeed, if a steady-state flow is already present at t = 0 when
the strength of the sink is increased, an effective image sink is already present above the fluid so that, physically,
the flow is more likely to resemble an orderly time-dependent transition from a steady state at one sink strength
to a new steady state at increased strength. This corresponds more closely to the situation that exists in practical
reservoir management, when demand for water increases smoothly from one level to another.

The analysis presented in this paper has been confined essentially to linearized theories, which assume that the
strength of the sink is small. These results are only capable of indicating flow behaviour in the one case in which
the flow ultimately evolves to a steady state. In such cases, the predictions of linearized theory are in agreement
with nonlinear results, such as those presented by Stokes et al. [14]. In addition, when an initial steady-state flow
is already present and the sink strength is increased, the orderly progression from one steady solution to another
predicted here is confirmed by these nonlinear results. However, there are two additional nonlinear solution types
that are not accessible to this linearized analysis. These involve situations in which the interface itself is drawn into
the sink, or else a vertical jet is produced, as discussed by Xue and Yue [12] and Stokes et al. [14]. The fact that
these other two types, which exist at higher withdrawal rates, are not available to linearized theories is seen by Xue
and Yue [12] as a weakness of such analyses, although numerical simulations appear to be the only options for such
highly nonlinear situations.

A question of very great practical interest for unsteady withdrawal models concerns the maximum sink strength
for which steady states can be achieved. There is a great disparity between this maximum strength, as computed by
Xue and Yue [12] for example, and that computed directly from a steady-state formulation by Forbes and Hocking
[4]. We suggest that the discrepancy is likely to be a result of the initial conditions assumed for the unsteady flow
simulations, and that impulsively turning the sink on at t = 0 is not a good method of maximizing the sink strength
for which steady states can be achieved. From the purely mathematical point of view, of course, there is no sin-
gle “right” initial condition for an unsteady flow, and starting velocity potentials and surface elevations could be
selected from an entire function space of such possibilities. However, given the importance of achieving long-term
steady withdrawal flows in many practical situations in reservoir management, and so on, the question of designing
start-up conditions that allow maximum steady sink strengths to be attained would appear to be an important area
for further research in fully nonlinear simulations.
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